Effect of Alanine Replacement of L17 and F19 on the Aggregation and Neurotoxicity of Arctic-Type Aβ40
نویسندگان
چکیده
Alzheimer's disease is the most common form of neurodegenerative disease. Beta-amyloid peptides (Aβ) are responsible for neuronal death both in vitro and in vivo. Previously, L17 and F19 residues were identified as playing key roles in the stabilization of the Aβ40 conformation and in the reduction of its neurotoxicity. In this study, the effects of L17A/F19A mutations on the neurotoxicity of Aβ genetic mutant Arctic-type Aβ40(E22G) were tested. The results showed that compared to Aβ40(E22G), Aβ40(L17A/F19A/E22G) reduced the rate of conformation conversion, aggregation, and cytotoxicity, suggesting that L17 and F19 are critical residues responsible for conformational changes which may trigger the neurotoxic cascade of Aβ. Aβ40(L17A/F19A/E22G) also had decreased damage due to reactive oxygen species. The results are consistent with the discordant helix hypothesis, and confirm that residues 17-25 are in the discordant helix region. Compared to Aβ40(L17A/F19A), reduction in aggregation of Aβ40(L17A/F19A/E22G) was less significantly decreased. This observation provides an explanation based on the discordant helix hypothesis that the mutation of E22 to G22 of Aβ40(E22G) alters the propensity of the discordant helix. Arctic-type Aβ40(E22G) aggregates more severely than wild-type Aβ40, with a consequential increase in toxicity.
منابع مشابه
L17A/F19A Substitutions Augment the α-Helicity of β-Amyloid Peptide Discordant Segment
β-amyloid peptide (Aβ) aggregation has been thought to be associated with the pathogenesis of Alzheimer's disease. Recently, we showed that L17A/F19A substitutions may increase the structural stability of wild-type and Arctic-type Aβ40 and decrease the rates of structural conversion and fibril formation. However, the underlying mechanism for the increase of structural stability as a result of t...
متن کاملCopper inducing Aβ42 rather than Aβ40 nanoscale oligomer formation is the key process for Aβ neurotoxicity.
Copper is known to be a critical factor in Alzheimer's disease (AD) pathogenesis, as it is involved in amyloid-β (Aβ) peptide related toxicity. However, the relationship between neurotoxicity and Aβ peptide in the presence of copper remains unclear. The effect of copper has not been clearly differentiated between Aβ42 and Aβ40, and it is still debated whether copper-mediated neurotoxicity is du...
متن کاملMechanism of amyloid β−protein dimerization determined using single−molecule AFM force spectroscopy
Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dr...
متن کاملSurprising toxicity and assembly behaviour of amyloid β-protein oxidized to sulfone.
Aβ (amyloid β-peptide) is believed to cause AD (Alzheimer's disease). Aβ42 (Aβ comprising 42 amino acids) is substantially more neurotoxic than Aβ40 (Aβ comprising 40 amino acids), and this increased toxicity correlates with the existence of unique Aβ42 oligomers. Met³⁵ oxidation to sulfoxide or sulfone eliminates the differences in early oligomerization between Aβ40 and Aβ42. Met³⁵ oxidation t...
متن کاملA New Method to Study Aggregation Effect of Harmonic Current Emissions in a Wind Farm Based on Type-III Wind Turbine Average Modeling
Assessment of complex harmonic current contribution of each wind turbines at connection point of a wind farm to the grid (primary emission) is presented in this paper. Moreover, contribution of grid background harmonic voltage distortion on harmonic current distortion (secondary emission) of each turbine is also evaluated. Both assessments are represented based on primary and secondary transfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013